EECS205000: Linear Algebra College of Electrical Engineering and Computer Science National Tsing Hua University Spring 2019

Homework #1 Coverage: Chapter 1–3 Due date: 29 March, 2019

Instructor: Chong-Yung Chi

TAs: Amin Jalili, Yi-Wei Li & Ping-Rui Chiang

Notice:

- 1. Please hand in your answer sheets by yourself to TAs in the class time or to the WCSP Lab., EECS building, R706, before 23:59 of the due date. No late homework will be accepted.
- 2. This homework includes 7 Problems in 14 pages with 100 points.
- 3. Please justify your answers with clear, logical and solid reasoning or proofs.
- 4. You need to **print** the Problem Set and aanswer the problems in the **blank boxes** after each problem or sub-problm. We provided enough space for every problem. However, if you need more space, you can print it in one-side manner (each page in one side of an A4), and use the back side as an additional space.
- 5. Please do the homework independently by yourself. However, you may discuss with someone else but copyied homework is not allowed. This will show your respect toward the academic integrity.
- 6. Write your name, student ID, email and department on the begining of your ansewr sheets.
- 7. Your *legible handwriting* is fine. However, you are very welcome to use text formatting packages for writing your answers.

Name	
Student ID	
Department	
Email Address	

Problem	Score
1	
2	
3	
4	
5	
6	
7	
Total	

Problem 1. (35 points) Which of the following statements is TRUE and which one is FALSE? Justify your answers.

(i) Let
$$V \triangleq \{\mathbf{x} = (x_1, x_2, x_3) \mid \mathbf{x} \in \mathbb{R}^3\}$$
. Let $\mathbf{y} = (y_1, y_2, y_3), \mathbf{w} = (w_1, w_2, w_3) \in V, t \in \mathbb{R}$ and consider
 $\mathbf{y} + \mathbf{w} \triangleq (y_1 + w_1, y_2 + 2w_2, y_3 - 3w_3),$
 $t\mathbf{y} \triangleq (ty_1, ty_2, ty_3).$

Then V is a subspace.

(ii) The set \mathcal{A} of all 2×2 lower triangular matrices forms a subspace for the space $\mathbb{R}^{2 \times 2}$.

(iii) Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$. Suppose the system $\mathbf{A}\mathbf{x} = \mathbf{0}_n$ has infinitely many solutions and $\mathbf{B}\mathbf{x} = \mathbf{0}_n$ has one solution. This implies the system $\mathbf{A}\mathbf{B}\mathbf{x} = \mathbf{0}_n$ has exactly one solution.

(iv) Let $\mathbf{A} \in \mathbb{R}^{n \times n}$. If \mathbf{x} is in the nullspace of \mathbf{A} , then \mathbf{x} is in the nullspace of \mathbf{A}^2 .

(v) The set $\mathcal{B} \triangleq \{(a, b, c) \in \mathbb{R}^3 \mid a = 4b\}$ is not a subspace of \mathbb{R}^3 .

(vi) Let $\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 2 & 6 \end{bmatrix}$. Suppose $\mathbf{A}\mathbf{x} = \mathbf{b}$ where $\mathbf{x} \in \mathbb{R}^2$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$. This linear system of equations is not consistent for any \mathbf{b} (i.e., no solution for any \mathbf{b}).

(vii) Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ and $\mathbf{AB} = \mathbf{I}_n$ where \mathbf{I}_n is the $n \times n$ identity matrix. Then, $rank(\mathbf{A}) = n$.

Problem 2. (5 points) Consider the matrix $\mathbf{A} = \begin{bmatrix} 1 & -1 & -1 & 1 \\ 2 & 0 & 2 & 0 \\ 0 & -1 & -2 & 0 \\ 3 & -3 & -2 & 4 \end{bmatrix}$. Use elimination steps to find the matrix \mathbf{E} such that $\mathbf{E}\mathbf{A} = \mathbf{I}$, where \mathbf{I} is the identity matrix.

Problem 3. (10 points) Let $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 8 \\ 7 & 8 & 4 \end{bmatrix}$.

(i) (5 points) Find a decomposition of \mathbf{A} such that $\mathbf{A} = \mathbf{L}\mathbf{U}$ where \mathbf{L} is a lower unitriangular matrix and \mathbf{U} is an upper triangular matrix.

(ii) (5 points) Consider the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ where $\mathbf{b} = \begin{bmatrix} 2 & 6 & 19 \end{bmatrix}^T$. Solve this system using the resulting LU decomposition in part (i).

(i) (5 points) Prove that $W_1 \cap W_2$ is the *largest subspace* of V contained in both W_1 and W_2 .

(ii) (5 points) Assume $p \ge q$. Show that:

 $\dim(W_1 \cap W_2) \le q.$

(iii) (5 points) Let $V = \mathbb{R}^3$ and assume p > q > 0. Let $W_1 + W_2 \triangleq \{\mathbf{w}_1 + \mathbf{w}_2 \mid \mathbf{w}_1 \in W_1, \mathbf{w}_2 \in W_2\}$. Find an example of subspaces W_1 and W_2 such that

 $\dim(W_1 + W_2) = p + q.$

Problem 5. (15 points) Let $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ -1 & -1 & -1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$. Let's denote C(.), N(.), rank(.) as the column space, null space and rank of corresponding matrix, respectively. Find $C(\mathbf{A}), N(\mathbf{A}), dim(N(\mathbf{A})), C(\mathbf{A}^T), N(\mathbf{A}^T)$.

Problem 6. (10 points) Let V be a finite dimensional vector space and $W_1, W_2 \subset V$ be two subspaces. Then *sum* of the two subspaces is defined as

$$S = W_1 + W_2 \triangleq \{ \mathbf{w}_1 + \mathbf{w}_2 \, | \, \mathbf{w}_1 \in W_1, \mathbf{w}_2 \in W_2 \}.$$

Then we define $direct \ sum$ of the two subspaces as

$$\mathcal{S} \triangleq W_1 \oplus W_2,$$

if: (1) $S = W_1 + W_2$ and (2) $W_1 \cap W_2 = \{\mathbf{0}\}$ (here \oplus accounts for the direct sum).

(i) (5 points) Prove that $V = W_1 \oplus W_2$ if and only if any vector $\mathbf{v} \in V$ can be uniquely written as $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$ where $\mathbf{v}_1 \in W_1$ and $\mathbf{v}_2 \in W_2$.

(ii) (5 points) Prove that $W_1 \cup W_2$ is a subspace of V if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

Problem 7. (10 points) Let
$$\mathbf{w}_1 = \begin{bmatrix} 3 \\ 3 \\ 9 \\ 6 \end{bmatrix}$$
, $\mathbf{w}_2 = \begin{bmatrix} 1 \\ \beta \\ 3 \\ 2 \end{bmatrix}$ and $\mathbf{w}_3 = \begin{bmatrix} 2 \\ 3 \\ 3\beta \\ 2\beta \end{bmatrix}$ where $\alpha \in \mathbb{R}$.

(i) (5 points) Find the values of β such that \mathbf{w}_1 , \mathbf{w}_2 and \mathbf{w}_3 be linearly independent.

(ii) (5 points) Find the values of β such that $\mathbf{w}_3 \in span\{\mathbf{w}_1, \mathbf{w}_2\}$.